"蚂蚁牙黑",快用 modelarts 自己实现一个!-4008云顶国际网站

发表于 2021/02/27 23:26:52 2021/02/27
【摘要】 copy工程师带您体验modelarts版“蚂蚁呀嘿”,欢迎加入mdg,我在广州等您!

一夜之间,朋友圈都在“蚂蚁牙黑”!网友却担心......"baby, don't worry, we have modelarts!",是的,咱用 modelarts 来制作,无需担心“有人模仿我的脸”,也不用担心偌大的水印。不过,使用别人的脸可能真的有法律风险!本文将介绍如何借力一站式 ai 开发平台,“傻瓜式”操作实现生成“蚂蚁牙黑“小视频。

环境准备

modelarts 和它的最佳搭档--对象存储服务 obs ,您可以理解为是“网盘”,主要要来存放数据集、模型或其他文件。

:  ai开发平台modelarts是面向开发者的一站式ai开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期ai工作流。


对象存储服务(object storage service,obs)提供海量、安全、高可靠、低成本的数据存储能力,可供用户存储任意类型和大小的数据。适合企业备份/归档、视频点播、视频监控等多种数据存储场景。

使用以上服务会有一定费用产生,或者您可以尝试认证为开发者会有一定代金券赠送,当然关注 modelarts 和加入 modelarts 开发者社区也会有机会获得大额代金券。

模型、素材准备

本次实现使用的是,这是一种基于关键点和局部仿射变换的图像动画方法,
论文地址:

下载预训练模型及素材

最近手头紧,非常抱歉不能为大家提供 obs 路径直接下载,我已将预训练模型及素材上传到 ,请自行下载到您的 obs 中。
当然如果您有可快速下载的地址,欢迎分享!
源文件地址: 或者 因为是源文件,因此不包含“蚂蚁牙黑”原视频素材,但我已添加至
如仍有需求,可以直接找我要,公众号:,wechat:hugi66;
欢迎加入 modelarts 开发者社区,广州地区的小伙伴可以加入4008云顶国际集团共创 mdg 广州站哦!

  • ai gallery 是在 modelarts 的基础上构建的开发者生态社区,提供模型、算法、hilens技能、数据集等内容的共享和交易。因此您可以下载分发的数据集或文件到您的 obs ,使用时请遵守相应的政策和规则!打开  点击下载按钮进入下载详情,设置 obs 路径,确定下载即可将模型和素材下载到自己的 obs 中,比如我路径是/modelarts-lab/first-order-motion-model。下载进度可以在 ai gallery 个人中心-我的下载查看。

 

 

just do it -- modelarts 我的笔记本

接下来开始使用 modelarts--我的笔记本 ,即开即用的在线集成开发环境,可以轻松的构建、训练、调试、部署机器学习算法与模型。当前使用免费规格用于体验, 值得留意的是 72 小时内没有使用,会释放资源,因此需要注意文件备份。当然还可以使用 notebook 免费算力,记得选择 gpu 环境哦!

当我们使用我的笔记本时默认开启的是 cpu 环境,因此我们需要切换到 gpu 环境。目前 modelarts-我的笔记本 支持8 vcpu 64 gib 1 x tesla v100-pcie-32gb

新建pytorch 1.0.ipynb文件,开始我们的“蚂蚁牙黑”体验之旅。

  • 下载代码

    !git clone https://github.com/aliaksandrsiarohin/first-order-model
    # or  
    !git clone https://codehub.devcloud.cn-north-4.huaweicloud.com/ai-pome-free00001/first-order-model.git

    github 速度慢,建议转存到再拉取。
    此处提供我已经缓存好的代码仓库地址,因此不再演示如何将 github 代码迁移到 codehub。
    (不保证我的账号欠费而无法访问,因此建议大家以自己的方式上传代码到 notebook !)

  • 利用 moxing 拷贝文件到 jupyterlab
    将之前下载到 obs 中的模型和素材通过 moxing 拷贝过来,此处注意替换为您的 obs 路径。02.mp4是“蚂蚁牙黑”的模版视频,

    # 此处牛刀小试--用 moxing 下载文件
    import moxing as mox
    # 此处需要替换您的 obs 地址
    mox.file.copy_parallel('obs://modelarts-lab/first-order-motion-model/first-order-motion-model-20210226t075740z-001.zip' , 'first-order-motion-model.zip')
    mox.file.copy_parallel('obs://modelarts-lab/first-order-motion-model/02.mp4' , '02.mp4')
    # 解压
    !unzip first-order-motion-model.zip  
    # 模版视频
    !mv 02.mp4 first-order-motion-model/
  • just do it
    准备工作完成之后,撸起袖子就是干!切换到first-order-model目录,然后将 source_image_path中的路径替换为”您的脸”所在的路径,脸的照片可以直接通过 notebook 的文件上传功能上传。
    当然您还可以将默认的“蚂蚁牙黑”视频替换为您自定义的视频,格式为 mp4。一路执行可以查看到合成前的预览。

    cd first-order-model
    import imageio
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.animation as animation
    from skimage.transform import resize
    from ipython.display import html
    import warnings
    warnings.filterwarnings("ignore")
    # 此处替换为您的图片路径,图片最好为 256*256,这里默认为普京大帝
    source_image_path = '/home/ma-user/work/first-order-motion-model/02.png'
    source_image = imageio.imread(source_image_path)
    # 此处可替换为您的视频路径,这里默认为“蚂蚁牙黑”
    reader_path = '/home/ma-user/work/first-order-motion-model/02.mp4'
    reader = imageio.get_reader(reader_path)
    # 调整图片和视频大小为 256x256
    source_image = resize(source_image, (256, 256))[..., :3]
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except runtimeerror:
        pass
    reader.close()
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
    def display(source, driving, generated=none):
        fig = plt.figure(figsize=(8   4 * (generated is not none), 6))
        ims = []
        for i in range(len(driving)):
            cols = [source]
            cols.append(driving[i])
            if generated is not none:
                cols.append(generated[i])
            im = plt.imshow(np.concatenate(cols, axis=1), animated=true)
            plt.axis('off')
            ims.append([im])
        ani = animation.artistanimation(fig, ims, interval=50, repeat_delay=1000)
        plt.close()
        return ani
    html(display(source_image, driving_video).to_html5_video())

     

  • 创建模型并加载 checkpoints
    这一步完成之后,我们便得到了“蚂蚁牙黑”的视频了--“generated.mp4”,这就结束了?不过,问题来了……

    from demo import load_checkpoints
    generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml', 
                                checkpoint_path='/home/ma-user/work/first-order-motion-model/vox-cpk.pth.tar')
    from demo import make_animation
    from skimage import img_as_ubyte
    predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=true)
    # 保存结果视频
    imageio.mimsave('../generated.mp4', [img_as_ubyte(frame) for frame in predictions], fps=fps)
    # 在 notebook 根目录能找,/home/ma-user/work/
    html(display(source_image, driving_video, predictions).to_html5_video())

     

  • 后续操作
    如果您和我一样直接下载并打开上面操作的产物--generated.mp4,您一定会和我一样困惑:声音呢?
    是的,声音丢失了,因为核心代码只处理图像,声音需要我们自行找回,因为我们使用。
    不仅如此,我们还可以为视频加水印。

  • 安装 moviepy 为视频剪辑做准备

    # 安装视频剪辑神器 moviepy
    !pip install moviepy
  • 为视频添加背景音乐

    # 为生成的视频加上源视频声音
    from moviepy.editor import *
    videoclip_1 = videofileclip(reader_path)
    videoclip_2 = videofileclip("../generated.mp4")
    audio_1 = videoclip_1.audio
    videoclip_3 = videoclip_2.set_audio(audio_1)
    videoclip_3.write_videofile("../result.mp4", audio_codec="aac")
  • 别人花钱去水印,而我还要加水印,欢迎加入mdg!

    # 还可以给视频加水印
    video = videofileclip("../result.mp4")
    # 水印图片请自行上传
    logo = (imageclip("/home/ma-user/work/first-order-motion-model/water.png")
            .set_duration(video.duration) # 水印持续时间
            .resize(height=50) # 水印的高度,会等比缩放
            .margin(right=0, top=0, opacity=1) # 水印边距和透明度
            .set_pos(("left","top"))) # 水印的位置
    final = compositevideoclip([video, logo])
    final.write_videofile("../result_water.mp4", audio_codec="aac")
    final_reader = imageio.get_reader("../result_water.mp4")
    fps = final_reader.get_meta_data()['fps']
    result_water_video = []
    try:
        for im in final_reader:
            result_water_video.append(im)
    except runtimeerror:
        pass
    reader.close()
    result_water_video = [resize(frame, (256, 256))[..., :3] for frame in result_water_video]
    html(display(source_image, driving_video, result_water_video).to_html5_video())

     

至此,本次实现先告一段落,关于“多人运动”--合照的解决办法还没来得及探索,欢迎您在评论区分享指导,感谢!

最后,打个小广告:广州的小伙伴欢迎加入4008云顶国际集团,共建 modelarts 生态!

【4008云顶国际集团的版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区),文章链接,文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。